A Theoretical Investigation on Thermal Entrance Region Heat Transfer in a Conduit Filled with Nanofluids
نویسنده
چکیده
A theoretical analysis has been made to explore thermal entrance region heat transfer in nanofluids. The numerical model used in this paper is based on the Buongiorno model for convective heat transfer in nanofluids with modifications to fully account for the effects of nanoparticles volume fraction distributions on the continuity, momentum and energy equations. Numerical investigations have been conducted for developing laminar forced convection flows in a circular tube subject to a uniform wall heat flux. From the results, it has been concluded that, for certain cases of aluminawater nanofluids and titania-water nanofluids, in most entrance region, anomalous heat transfer enhancement (that exceeding the rate expected from the increase in thermal conductivity) is possible, whereas, close to the edge of the entrance, no anomalous heat transfer enhancement is observed.
منابع مشابه
Heat Transfer Coefficients Investigation for TiO2 Based Nanofluids
From a regression analysis perspective, this paper focused on literature about TiO2 nano particles. The particles on focus entailed those that had been suspended in ethylene glycol and water – at a ratio of 60:40. Indeed, regression analysis has gained application in contexts such as the turbulent Reynolds number, especially with the aim of establishing the impact of the ratio of the...
متن کاملExperimental Investigation of Heat Transfer Enhancement in a Finned U-Shaped Heat Pipe of CPU Cooling System Using Different Fluids
This paper experimentally studies the heat absorption performance of a heat sink with vertical embedded heat pipes in the aluminum blade. The cooling system with embedded heat pipes distributes heat from the CPU to both the base plate and the heat pipes, and then transfer heat from fins to the Environment. The thermal resistance and heat transfer coefficient are evaluated for natural convection...
متن کاملCFD Investigation of Gravitational Sedimentation Effect on Heat Transfer of a Nano-Ferrofluid
In the present attempt, flow behavior and thermal convection of one type of nanofluids in a disc geometry was investigated using Computational Fluid Dynamics (CFD). Influence of gravity induced sedimentation also has been studied. The commercial software, Fluent 6.2, has been employed to solve the governing equations. A user defined function was added to apply a uniform external ma...
متن کاملNanofluids for Heat Transfer Enhancement – A Review
A nanofluid is a dilute liquid suspension of particles with at least one critical dimension smaller than ~100 nm. Research works so far suggest that nanofluids offer excellent heat transfer enhancement over conventional base fluids. The enhancement depends on several factors such as particle shape, particle size distribution, volume fraction of nanoparticles, temperature, pH, and thermal conduc...
متن کاملNumerical simulation of nanofluids flow and heat transfer through isosceles triangular channels
Nanofluids are stable suspensions of nanoparticles in conventional heat transfer fluids (base fluids) that exhibit better thermal characteristics compared to those of the base fluids. It is important to clarify various aspects of nanofluids behavior. In order to identify the thermal and hydrodynamic behavior of nanofluids flowing through non-circular ducts, in the present study the laminar flow...
متن کامل